

DISENO

M

I C R O R O B O T S

Ejemplos

Conexión del L298 a Arduino en el Kit

- Jumper del regulador conectado

 $ENA = pin 5 \sim \rightarrow Velocidad$ $EN1 = pin A3 \rightarrow Sentido$ $EN2 = pin A2 \rightarrow Sentido$

$$EN3 = pin 4 \rightarrow Sentido$$

$$EN4 = pin 7 \rightarrow Sentido$$

$$ENB = pin 6 \sim \rightarrow Velocidad$$

const uint8_t pin_L298_ENA = 5; const uint8_t pin_L298_IN1 = A3; const uint8_t pin_L298_IN2 = A2; const uint8_t pin_L298_ENB = 6; const uint8_t pin_L298_IN3 = 4; const uint8_t pin_L298_IN4 = 7;

D I S E N O Μ I C R O R 0 B 0 T S

Ejemplo de control del robot a 6 Hilos

const uint8_t pin_L298_ENA = 5; const uint8_t pin_L298_IN1 = A3; const uint8_t pin_L298_IN2 = A2; const uint8_t pin_L298_ENB = 6; const uint8_t pin_L298_IN3 = 4; const uint8_t pin_L298_IN4 = 7;

void configMotores(void) {

pinMode(pin_L298_ENA,OUTPUT); pinMode(pin_L298_IN1,OUTPUT); pinMode(pin_L298_IN2,OUTPUT); pinMode(pin_L298_ENB,OUTPUT); pinMode(pin_L298_IN3,OUTPUT); pinMode(pin_L298_IN4,OUTPUT);

digitalWrite(pin_L298_IN1, LOW); digitalWrite(pin_L298_IN2, LOW); digitalWrite(pin_L298_IN3, LOW); digitalWrite(pin_L298_IN4, LOW); analogWrite(pin_L298_ENA,0); analogWrite(pin_L298_ENB,0);

```
// Función que configura la velocidad y sentido de un motor
// velovidad toma valores entre +/- 100
void setVelocidadMotorD (float velocidad){
```

```
// Comprueba los límites
if (velocidad > 100) velocidad = 100;
if (velocidad < -100) velocidad = -100;</pre>
```

```
if (velocidad > 0) {
    // Si la velocidad es positiva
    digitalWrite(pin_L298_IN1, HIGH);
    digitalWrite(pin_L298_IN2, LOW);
    analogWrite(pin_L298_ENA,(int)((velocidad*255)/100));
} else if (velocidad < 0) {
    // Si la velocidad es positiva
    digitalWrite(pin_L298_IN1, LOW);
    digitalWrite(pin_L298_IN2, HIGH);
    analogWrite(pin_L298_ENA,(int)((-velocidad*255)/100));
} else {
    // Si la velocidad es positiva
    digitalWrite(pin_L298_IN1, LOW);
    digitalWrite(pin_L298_IN1, LOW);
    digitalWrite(pin_L298_IN1, LOW);
    digitalWrite(pin_L298_IN1, LOW);
    digitalWrite(pin_L298_IN2, LOW);
    analogWrite(pin_L298_IN2, LOW);
    analogWrite(pin_L298_ENA,0);
</pre>
```


Ejemplo de control del robot a 6 Hilos

// Función que configura la velocidad y sentido de un motor
// velovidad toma valores entre +/- 100
void setVelocidadMotorI (float velocidad){

// Comprueba los límites
if (velocidad > 100) velocidad = 100;
if (velocidad < -100) velocidad = -100;</pre>

if (velocidad > 0) { // Si la velocidad es positiva digitalWrite(pin_L298_IN3, HIGH); digitalWrite(pin_L298_IN4, LOW); analogWrite(pin L298 ENB,(int)((velocidad*255)/100)); } else if (velocidad < 0) {</pre> // Si la velocidad es positiva digitalWrite(pin L298 IN3, LOW); digitalWrite(pin_L298_IN4, HIGH); analogWrite(pin_L298_ENB,(int)((-velocidad*255)/100)); } else { // Si la velocidad es positiva digitalWrite(pin_L298_IN3, LOW); digitalWrite(pin_L298_IN4, L0W); ControlMotores 1 analogWrite(pin L298 ENB,0);

void setup() {
 configMotores();
}

void loop() {
 int vel = 70;

//Recto
setVelocidadMotorI (vel);
setVelocidadMotorD (vel);
delay(1000);

//Gira
setVelocidadMotorI (vel);
setVelocidadMotorD (-vel);
delay(1000);

```
// Atrás
setVelocidadMotorI (-vel);
setVelocidadMotorD (-vel);
delay(1000);
```

```
//Gira
setVelocidadMotorI (-vel);
setVelocidadMotorD (vel);
delay(1000);
```


Propuesta de actividades

- Actividad 2
 - Modifica el programa de la actividad anterior para que, al recibir por el puerto serie un número entre -100 y 100, ponga uno de los motores a esa velocidad.
 - Haz el programa más robusto haciendo que si el número es superior a 100 o inferior a -100, sature la salida a 100 o -100 respectivamente.

Ejemplo de control del robot a 6 Hilos

```
void setup() {
  configMotores();
 // initialize serial communications at 9600 bps:
  Serial.begin(9600);
  // print the three numbers in one string as hexadecimal:
  Serial.print("Introduzca valor de la velocidad del robot (-100 a 100):\n");
void loop() {
   while (Serial.available() > 0) {
      // lee el siguiente valor entero disponible.
      int value = Serial.parseInt();
      // Espera hasta que se haya recibido algún dato por el puerto serie.
      if (Serial.read() == ' ') {
         // Se espera leer valores entre -100 y 100
         setVelocidadMotorI (value);
         setVelocidadMotorD (value);
         Serial.print("Velocidad actual: ");
         Serial.println(value);
         Serial.print("Introduzca nuevo valor de la velocidad del robot (-100 a 100):\n");
```


Propuesta de actividades

- Actividad 3
 - Modifica el programa de la actividad anterior para que sea capaz de recibir la velocidad de los dos motores a la vez. Por ejemplo, "0 -20", "30 -30", "-20 80".

D

I S E N O

M

I C R

O R

O B

Ö T S

Ejemplos

```
Ejemplo de control del robot a 6 Hilos
                                                                           ControlMotores 3
  void setup() {
    configMotores();
    // initialize serial communications at 9600 bps:
    Serial.begin(9600);
    // print the three numbers in one string as hexadecimal:
    Serial.print("Introduzca nuevo valor de las velocidades separadas por espacio (-100 a 100):\n");
  void loop() {
    while (Serial.available() > 0)
    {
      //Create a place to hold the incoming message
      static char message[MAX MESSAGE LENGTH];
      static unsigned int message_pos = 0;
      //Read the next available byte in the serial receive buffer
      char inByte = Serial.read();
      //Message coming in (check not terminating character) and guard for over message size
      if ( inByte != endChar && (message pos < MAX MESSAGE LENGTH - 1) )
        //Add the incoming byte to our message
        message[message_pos] = inByte;
        message_pos++;
      //Full message received...
      else
```


D

Ejemplos

ControlMotores_3

```
Ejemplo de control del robot a 6 Hilos
```

else

{

}

int vel_der = 0; int vel_izq = 0;

```
//Add null character to string
message[message_pos] = '\0';
```

```
//Print the message (or do other things)
Serial.println(message);
```

```
//Reset for the next message
message_pos = 0;
```

```
// Se lee las dos velovidades separadas por espacio
sscanf(message,"%i %i", &vel_izq, &vel_der);
```

```
setVelocidadMotorI (vel_izq);
setVelocidadMotorD (vel_der);
```

```
Serial.print("Velocidades seleccionadas: ");
Serial.print(vel_izq);
Serial.print(" ");
Serial.println(vel_der);
Serial.print("Introduzca nuevo valor de las velocidades separadas por espacio (-100 a 100):\n");
```


Conexión del L298 a Arduino en el Kit

- Jumpers de ENA y ENB conectados (Motores activos)
- Jumper del regulador conectado

ENA = -----EN1 = pin 6 ~ \rightarrow Velocidad EN2 = pin 7 \rightarrow Sentido

 $EN3 = pin 5 \sim \rightarrow Velocidad$ $EN4 = pin 4 \rightarrow Sentido$ ENB = -----

const uint8_t pin_L298_IN1 = 6; const uint8_t pin_L298_IN2 = 7; const uint8_t pin_L298_IN3 = 5; const uint8_t pin_L298_IN4 = 4;

Conexión del L298 a Arduino en el Kit

- Velocidad derecha: $IN1 \rightarrow 6$ Sentido derecha: $IN2 \rightarrow 7$
- Velocidad izquierda: $IN3 \rightarrow 5$ Sentido izquierda: $IN4 \rightarrow 4$

Jumpers de ENA y ENB conectados (Motores activos)

– Jumper del regulador conectado

https://naylampmechatronics.com/blog/11_tutorial-de-uso-del-modulo-1298n.html

Ejemplo

- Conectar los motores al puente en H y éste a Arduino
- Función que recibe un % de velocidad de +100 a -100 y controla la velocidad de un motor

Pseudocódigo

```
SetVelocidad (velocidad)
Si (velocidad > 0)
Sentido = 0
PWM = velocidad * 255 / 100
Si (velocidad < 0)
Sentido = 1
PWM = 255 - velocidad * 255 /100</pre>
```


D

I S E N O

M

I C

R

O R

O B O T S

Generación de señales de control

Conexión de un motor del L298 a Arduino a 4H

- Jumper de ENB conectado (Motores activos)
- Jumper del regulador conectado

ControlMotores_4

const uint8_t pin_L298_IN1 = 6; const uint8_t pin_L298_IN2 = 7; const uint8_t pin_L298_IN3 = 5; const uint8_t pin_L298_IN4 = 4;

void configMotores(void) {
 pinMode(pin_L298_IN1,OUTPUT);
 pinMode(pin_L298_IN2,OUTPUT);
 pinMode(pin_L298_IN3,OUTPUT);
 pinMode(pin_L298_IN4,OUTPUT);

analogWrite(pin_L298_IN1, 0); digitalWrite(pin_L298_IN2, LOW); analogWrite(pin_L298_IN3, 0); digitalWrite(pin_L298_IN4, LOW);

ENA =	
$EN1 = pin 6 \sim \rightarrow Velocidad$	
$EN2 = pin 7 \rightarrow Sentido$	
-	
$EN3 = pin 5 \sim \rightarrow Velocidad$	
$EN4 = pin 4 \rightarrow Sentido$	
ENB =	

M_4

Ejemplo de control del robot a 4 Hilos

```
void setVelocidadMotorD_4H (float velocidad){
```

```
// Comprueba los límites
if (velocidad > 100) velocidad = 100;
if (velocidad < -100) velocidad = -100;
if (velocidad > 0) {
 // Si la velocidad es positiva
 analogWrite(pin L298 IN1, (int)((velocidad*255)/100));
 digitalWrite(pin L298 IN2, LOW);
 } else if (velocidad < 0) {</pre>
// Si la velocidad es positiva
  analogWrite(pin_L298_IN1, (int)(255-(-velocidad*255)/100));
  digitalWrite(pin L298 IN2, HIGH);
} else {
// Si la velocidad es positiva
  analogWrite(pin_L298_IN1, 0);
  digitalWrite(pin_L298_IN2, LOW);
}
```

```
DISENO
Μ
I
C
R
O
R
O
B
O
T
S
```


Ejemplo de control del robot a 4 Hilos

```
void setVelocidadMotorI_4H (float velocidad){
 // Comprueba los límites
  if (velocidad > 100) velocidad = 100;
  if (velocidad < -100) velocidad = -100;
  if (velocidad > 0) {
   // Si la velocidad es positiva
   analogWrite(pin_L298_IN3, (int)((velocidad*255)/100));
    digitalWrite(pin L298 IN4, LOW);
  } else if (velocidad < 0) {</pre>
  // Si la velocidad es positiva
    analogWrite(pin_L298_IN3, (int)(255-(-velocidad*255)/100));
    digitalWrite(pin_L298_IN4, HIGH);
  } else {
  // Si la velocidad es positiva
    analogWrite(pin_L298_IN3, 0);
    digitalWrite(pin_L298_IN4, L0W);
  }
```


Ejemplo de control del robot a 4 Hilos

ControlMotores_4

```
void setup() {
  configMotores();
  // initialize serial communications at 9600 bps:
  Serial.begin(9600);
 // print the three numbers in one string as hexadecimal:
  Serial.print("Introduzca valor de la velocidad del robot (-100 a 100):\n");
void loop() {
   while (Serial.available() > 0) {
      // lee el siguiente valor entero disponible.
      int value = Serial.parseInt();
      // Espera hasta que se haya recibido algún dato por el puerto serie.
      if (Serial.read() == '\n') {
         // Se espera leer valores entre -100 y 100
         setVelocidadMotorD_4H (value);
         setVelocidadMotorI_4H (value);
         Serial.print("Velocidad actual: ");
         Serial.println(value);
         Serial.print("Introduzca nuevo valor de la velocidad del robot (-100 a 100):\n");
```

}

Propuesta de actividades

- Actividad
 - Hacer un programa que haga que el robot vaya en línea recta.
 - Modificar las funciones de control de los motores para añadirles un factor de ajuste que permita que el robot vaya en línea recta cuando se pasa el mismo valor a los dos motores.

Uso de librería L298N de Andrea Lombardo

- https://github.com/AndreaLombardo/L298N

// With Enable pin to control speed
L298N myMotor(EN, IN1, IN2);

// Without Enable pin with jumper in place
L298N myMotor(IN1, IN2);

// Create one motor instance
L298N motor(EN, IN1, IN2);

```
void setup()
  // Set initial speed
  motor.setSpeed(70);
```

M_4

Uso de librería L298N de Andrea Lombardo

- https://github.com/AndreaLombardo/L298N

Method	Params	Description
setSpeed	unsigned short pwmVal	Set the PWM value used to determine the motor speed. Value from 0 to 255.
getSpeed	none	Get the speed previously set.
forward	none	Run motor in forward direction (depends on wiring).
forwardFor	unsigned long delay	Run motor in forward direction for a time specified by delay.
forwardFor	unsigned long delay, CallBackFunction callback	Run motor in forward direction for a time specified by delay, after moving execute a callback function.
backward	none	Run motor in backward direction (depends on wiring).
backwardFor	unsigned long delay	Run motor in backward direction for a time specified by delay.
backwardFor	unsigned long delay, CallBackFunction callback	Run motor in backward direction for a time specified by delay, after moving execute a callback function.

DISENO

M I C R O R O B O T S

Ejemplos

Uso de librería L298N de Andrea Lombardo

- https://github.com/AndreaLombardo/L298N

run	uint8_t direction	Move motor. To specify the direction use one of L298N::FORWARD, L298N::BACKWARD or L298N::STOP.
runFor	unsigned long delay, L298N::Direction direction	Like <i>forwardFor</i> or <i>backwardFor</i> but more flexible. To specify the direction use one of <i>L298N::FORWARD</i> , <i>L298N::BACKWARD</i> or <i>L298N::STOP</i> .
runFor	unsigned long delay, L298N::Direction direction, CallBackFunction callback	Like previous with the ability to execute a callback function.
stop	none	Stop the motor.
reset	none	Used to re-enable motor movements after the use of <i>runFor, forwardFor</i> or <i>backwardFor</i> methods.
isMoving	none	Returns a boolean indicating if motor is running or not.
getDirection	none	Returns the current L298N::Direction.

Uso de librería L298N de Andrea Lombardo

- https://github.com/AndreaLombardo/L298N

Same thing for L298NX2 variant

// Without Enable pin and jumper in place

Uso de librería L298N de Andrea Lombardo

```
// Initialize both motors
L298NX2 motors(EN_A, IN1_A, IN2_A, EN_B, IN1_B, IN2_B);
```

```
void setup()
{
```

```
// Set initial speed for both motors
motors.setSpeed(80);
```

```
}
```

```
void loop()
```

```
{
```

```
// Tell both motors to go forward (may depend by your wiring)
motors.forward();
delay(3000);
```

```
// Stop
motors.stop();
delay(3000);
```

```
// Change individual speeds
motors.setSpeedA(255);
motors.setSpeedB(90);
```


Uso de librería L298N de Andrea Lombardo

- https://github.com/AndreaLombardo/L298N

Method	Params
setSpeed	unsigned short pwmVal
forward	none
forwardFor	unsigned long delay, CallBackFunction callback
forwardFor	unsigned long delay
backward	none
backwardFor	unsigned long delay, CallBackFunction callback
backwardFor	unsigned long delay
run	uint8_t direction
runFor	unsigned long delay, L298N::Direction direction
runFor	unsigned long delay, L298N::Direction direction, CallBackFunction callback
stop	none
reset	none

Referencias

Referencias

- Maxon DC motor and Maxon EC motor. Key information
 - https://www.maxongroup.com/medias/sys_master/root/8815460712478/ DC-EC-Key-Information-14-EN-42-50.pdf?attachment=true
- How to select a DC Micromotor. Faulhaber
 - http://fab.cba.mit.edu/classes/961.04/topics/actuator/DCmicromotor.pdf
- El módulo controlador de motores L298N. Prometec.net
 - https://www.prometec.net/l298n/
- Arduino y L298N: montaje y conexión
 - https://www.prometec.net/coche-arduino-1298n/
- Controlar motores de corriente continua con Arduino y L298N. Luis Llamas
 - https://www.luisllamas.es/arduino-motor-corriente-continua-1298n/
- Tutorial del uso del módulo L298N. naylampmechatronics.com
 - https://naylampmechatronics.com/blog/11_tutorial-de-uso-del-modulo-1298n.html
- Puertos Analógicos Arduino Avanzado
 - https://aprendiendoarduino.wordpress.com/2017/09/05/puertosanalogicos-arduino-avanzado/

Referencias

Referencias

- Secrets of Arduino PWM
 - https://www.arduino.cc/en/Tutorial/SecretsOfArduinoPWM